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ORIGINAL ARTICLE
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Azhin Tahir Sabir d, Dara Muhammad Hawez e
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d Department of Software Engineering, Faculty of Engineering, Koya University, Koya, Kurdistan Region, Iraq
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Abstract

Intensity-Duration-Frequency (IDF) curves are crucial for the design and management of engineering infrastructure,
including storm sewers, retention ponds, dams, and flood mitigation systems. This study adopts a comparative approach
to estimate IDF curves using a combination of traditional statistical methods, machine learning techniques, and
advanced deep learning models. Rainfall data from Koya City, Iraq (2005e2022), was used, with the 2005e2015 period
for training and 2016e2022 for validation. The models evaluated include the Gumbel Distribution, Linear Regression,
Support Vector Regression (SVR), and Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM),
assessed based on three metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of
Determination (R2). Among these, the RNN-LSTM model demonstrated the lowest RMSE (1.44 mm/hr), lowest MAE
(0.81 mm/hr), and highest R2 (0.99), outperforming the Gumbel Distribution (RMSE: 9.13 mm/hr), Linear Regression
(RMSE: 10.76 mm/hr), and SVR (RMSE: 6.19 mm/hr). This establishes RNN-LSTM as the most reliable approach for IDF
curve prediction.
Leveraging the RNN-LSTM model, rainfall trends for 2023e2043 were forecasted, revealing an expected increase

in short-duration, high-intensity rainfall events, heightening flood risks, and emphasizing the need for adaptive
stormwater management strategies. The findings underscore the significant potential of deep learning models like RNN-
LSTM in enhancing IDF curve predictions and guiding the development of resilient hydraulic infrastructure, particu-
larly in regions like Koya City, where complex topography exacerbates flood challenges during intense rainfall events.

Keywords: Rainfall intensity-duration-frequency curves, RNN-LSTM, Flood risk management, Machine learning, Koya
City, Iraq

1. Introduction

T he Intensity-Duration-Frequency (IDF) curve
is a key tool in hydrological engineering, of-

fering essential insights into the relationship be-
tween rainfall intensity, duration, and occurrence
frequency [1]. Derived from historical rainfall data,
IDF curves are vital for forecasting extreme rainfall
events, especially in regions vulnerable to severe

weather. These curves enable engineers to deter-
mine the intensity and duration of rainfall that
stormwater systems, dams, and drainage infra-
structure must withstand to prevent flooding and
structural failure. By quantifying rainfall extremes,
IDF curves act as critical benchmarks for assessing
the stability and resilience of hydraulic infrastruc-
ture under varying weather conditions. Accurate IDF
predictions support more resilient infrastructure
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designs, particularly in areas facing increased storm
intensity and frequency due to climate change. Thus,
IDF curves are indispensable in developing safe,
efficient, and sustainable flood control systems that
safeguard both urban and rural communities from
flood-related damage [2]. In regions like Koya City,
where intense rainfall events are frequent, these
curves are critical for designing stormwater infra-
structure and flood control systems. They help
mitigate urban flooding, minimize property damage,
and protect lives by guiding the development of
resilient hydraulic structures tailored to local con-
ditions. Nevertheless, the local civil engineers are in
need of having up-to-date hydrological formulae,
relationships, and information in order to be able to
adequately design the flood control hydraulic
structures. Accurate IDF curves are essential for
predicting extreme rainfall events, which are crucial
in flood risk management, and planning of infra-
structure, particularly in the face of increasing
climate variability and extreme weather events [3,4].
Traditionally, the development of IDF curves has

relied on statistical methods, with the Gumbel dis-
tribution being a widely used approach due to its
effectiveness in modeling extreme rainfall events
[5]. The Gumbel distribution, along with other
methods like the Log-Pearson Type III distribution,
has been foundational in estimating the probability
of extreme hydrological events [6]. However, these
traditional methods often assume stationarity in the
climatic data, which may not hold true under the
current trends of global climate change [7]. This
limitation underscores the need for more sophisti-
cated approaches that can better capture the com-
plex, non-linear relationships inherent in rainfall
data.
In recent years, advancements in Machine Lear-

ning (ML) and deep learning (DL) have introduced
powerful new tools for enhancing the accuracy and
reliability of IDF curves. These approaches, which
include techniques such as Support Vector
Regression (SVR), Artificial Neural Networks
(ANNs), and particularly Recurrent Neural Net-
works (RNNs) with Long Short-Term Memory
(LSTM) units, have shown significant promise in
modeling complex, non-linear hydrological pro-
cesses [8]. For instance, studies have demonstrated
that LSTM networks, which are adept at handling
time-series data, can significantly outperform
traditional statistical methods in predicting rainfall
intensities over various durations and frequencies
[9]. Machine learning methods such as SVR have
been effectively employed to model rainfall data,
offering improvements in capturing the non-linear
relationships between rainfall intensity and other

climatic variables [10,11]. Similarly, ANNs have
been used to develop regional IDF curves with
enhanced accuracy, adapting to the unique climatic
conditions of different regions [2]. These methods
not only improve the precision of IDF curve pre-
dictions, but also allow for the integration
of additional data sources, such as satellite obser-
vations and climate model outputs, providing a
more comprehensive understanding of rainfall
patterns [10].
Moreover, recent advancements in deep learning

have significantly improved predictive capabilities
in various domains. For instance, studies like [12].
Demonstrate the effectiveness of LSTM models in
forecasting temporal patterns in energy systems,
achieving superior accuracy through their ability to
capture non-linear dependencies in time-series
data. Similarly [13], highlights the application of
LSTM networks in fault classification, leveraging
historical data to predict potential failures with high
precision. Additionally [14], explores the integra-
tion of deep learning in renewable energy,
showcasing how LSTM can address short-term
prediction challenges in dynamic environments.
These applications emphasize the robustness of
deep learning methods in handling sequential data,
reinforcing their relevance to rainfall intensity-
duration-frequency (IDF) curve modeling. Incor-
porating such techniques into hydrological studies
not only enhances prediction accuracy but also
adapts to the increasing complexity posed by
climate variability.
The importance of accurate IDF curves is partic-

ularly evident in regions with complex climatic
conditions, such as the Middle East and North Af-
rica region. In Iraq, for example, accurate IDF curve
estimation is vital for managing water resources and
mitigating flood risks, especially in urban areas
where infrastructure is vulnerable to extreme
weather events [15e17] Recent studies in the
Kurdistan region of Iraq have shown that deep
learning models, particularly LSTM networks, can
significantly enhance the accuracy of IDF curves by
better capturing the temporal dependencies in
rainfall data [2]. Moreover, the integration of ML
and DL techniques into hydrological modeling is
not only a response to the challenges posed by
climate change but also a proactive approach to
improving the resilience of urban infrastructure. By
continuously updating IDF curves with new data
and refined models, these techniques help ensure
that flood management strategies remain effective
in the face of evolving climatic conditions [18,19].
This current research aims to explore and

compare the efficacy of various methods, including
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traditional statistical approaches, machine learning
techniques, and advanced deep learning models, in
estimating IDF curves for Koya City, Iraq. By
analyzing rainfall data from 2005 to 2022 and
applying these diverse methodologies, this research
seeks to identify the most reliable techniques for
predicting future rainfall patterns and supporting
flood risk management in the region. To date, this
kind of the study has not been carried out in the
selected area.

2. Materials and methods

2.1. Dataset description

The study focuses on Koya City, as illustrated in
Fig. 1, a region known for its distinctive climatic
conditions that influence rainfall patterns. This city
was selected as a case study due to the availability of
comprehensive rainfall data over an extended
period and its vulnerability to flooding, necessi-
tating precise hydrological modeling. Rainfall data
spanning from 2005 to 2022 was sourced from local
meteorological stations and government agencies
responsible for monitoring hydrological data [20].
The dataset includes daily rainfall amounts

recorded over ten distinct durations: 5 min, 10 min,
20 min, 30 min, 60 min, 120 min, 180 min, 360 min,
720 min, and 1440 min. These durations, standard in
hydrological studies, provide a detailed view of
rainfall intensity over both short and extended pe-
riods. The data is well-suited for generating IDF-
curves and analyzing future rainfall patterns.

2.2. Preprocessing and inputs

The rainfall data was preprocessed to ensure
quality and compatibility for predictive modeling.
Z-score normalization was applied to standardize
the data, ensuring consistency across features.
Missing values were addressed using mean impu-
tation, while outliers were replaced with median
values to minimize distortion. The data was codified
into sequences based on standard durations
(5e1440 min) and split into training (2005e2015) and
validation (2016e2022) subsets. These preprocessing
steps ensured the dataset was clean, consistent, and
ready for analysis.

2.3. Methods

To predict future IDF curves, four different mo-
deling approaches were employed: Gumbel Distri-
bution (GD), Linear Regression (LR), SVR, and RNN
with LSTM. The dataset was divided into two sub-
sets: the period from 2005 to 2015 was used for
training the models, while the period from 2016 to
2022 was reserved for validation.
The prediction workflow for each method is

depicted in Fig. 2. Each modeling approach was
applied to simulate IDF curves, and their perfor-
mances were assessed using three metrics: Root
Mean Square Error (RMSE), Mean Absolute Error
(MAE), and the Coefficient of Determination (R2).
These metrics provide a comprehensive evaluation
of each method's predictive accuracy, with RMSE
quantifying the average magnitude of prediction

Fig. 1. Map of study area Koya City.
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errors, MAE reflecting the average absolute devia-
tion of predictions from actual values, and R2 indi-
cating the proportion of variance explained by the
model. By incorporating multiple metrics, we
ensured a more robust and transparent assessment
of the predictive capabilities of each approach.

2.3.1. Gumbel Distribution method
The Gumbel Distribution is a well-recognized

statistical method commonly employed to model
extreme rainfall intensities over various time dura-
tions. Valued for its simplicity and reliability, it is
frequently used in hydrology to estimate the likeli-
hood of rare, high-intensity rainfall events, making
it particularly useful when working with limited
datasets (Gumbel, 1958). In this study, the Gumbel
Distribution served as a baseline model for fore-
casting rainfall intensities and was instrumental in
generating IDF curves, which are essential for
assessing flood risks and evaluating the resilience of
infrastructure against extreme weather events.

Key Steps

1. Calculation of Statistical Parameters: The mean
(m) and standard deviation (s) were calculated for
each of the 10 rainfall durations (5e1440 min),
establishing the parameters needed to fit the
Gumbel Distribution to the data.

2. Gumbel Distribution Function: The cumulative
distribution function (CDF) of the Gumbel Dis-
tribution, defined as FðxÞ ¼ exp

�� exp
��x�m

s

��

…(1)

was used to estimate the probability of extreme
rainfall events, x is the rainfall intensity, m is the
location parameter (mean), s is the scale parameter
(standard deviation).

3. Calculation of Intensity for Return Periods: For a
given return period T, the rainfall intensity I(T)
was calculated as:

IðTÞ¼mþsKt ð2Þ

where: P ¼ 1/T is the probability of exceedance
associated with the return period T.

4. Prediction of Rainfall Intensities and Genera-
tion of IDF Curves: With the calculated param-
eters, IDF curves were created to illustrate the
relationship between rainfall intensity, duration,
and frequency, as displayed in Fig. 3. These
curves are a crucial tool for flood risk manage-
ment and infrastructure planning, providing
essential benchmarks for designing systems
capable of withstanding extreme weather events.

5. Limitations of the Gumbel Distribution and the
Role of Machine Learning: Although the Gum-
bel Distribution effectively models extreme
rainfall events, its assumption of independent,
identically distributed data restricts its ability to
adapt to the complex, non-linear patterns found
in Koya City's rainfall data. These limitations
underscore the benefits of machine learning
approaches, which offer greater flexibility and

Fig. 2. Prediction of rainfall.
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accuracy in capturing such complex relation-
ships, a key focus of this study.

2.3.2. Machine learning
IDFoffers robust tools for identifying complex,

non-linear patterns in data, proving especially
valuable when traditional statistical models like the
Gumbel Distribution have limitations. Alongside
the Gumbel approach, this study applied three ML
techniques LR, SVR, and RNN-LSTM to estimate
IDF curves and predict rainfall intensities. These ML
methods enhance prediction accuracy, allowing for
a deeper understanding of rainfall trends and
improved infrastructure planning.

2.3.2.1. Linear Regression (LR). Linear Regression was
used as a baseline model to establish a simple linear
relationship between rainfall intensity and duration,
represented by I ¼ aDþb, where I is the intensity, D
the duration, a the slope, and b the intercept.
Although LR assumes linearity, it provides a refer-
ence point for assessing the predictive performance
of more complex models (Yu, Yang, and Lin, 2004).
The LR model predicts future rainfall intensity
based solely on historical rainfall data without
explicitly incorporating “year” as an input feature.
This approach assumes a direct relationship be-
tween rainfall intensities and durations, neglecting
temporal trends. While this simplification facilitates
implementation, it limits the model's ability to cap-
ture temporal variability.

2.3.2.2. Support Vector Regression. SVR extends Sup-
port Vector Machines to regression, using a Gau-
ssian kernel to capture non-linear relationships in

rainfall data. SVR identifies a function f(x) ¼ u $
f(x) þ b that maintains predictions within an
acceptable margin of error while minimizing de-
viations from observed values. This method offers
an intermediate solution between simple linear
models and deep learning (Ramaseshan, 1996).

2.3.2.3. RNN-LSTM model for rainfall prediction. The
study employed an RNN-LSTM model to capture
long-term dependencies within sequential rainfall
data. LSTM networks are specifically designed to
retain important historical information through
memory cells, making them particularly effective for
time-series forecasting. Here, the RNN-LSTM
model was trained on historical rainfall data to
predict future intensities, adeptly capturing the
temporal patterns unique to Koya City's climate. As
shown in Fig. 4, the RNN-LSTM's architecture le-
verages input, output, and forget gates to regulate
data flow, enhancing its capacity to model complex
rainfall sequences [9].

2.4. Validation and comparison

2.4.1. Comparison metric
To evaluate the accuracy and reliability of the

rainfall intensity predictions, we used three com-
parison metrics: RMSE, MAE, and R2. These metrics
were chosen to provide a comprehensive assess-
ment of the models' performance across various
aspects. RMSE was used as the primary metric due
to its sensitivity to large errors, MAE for assessing
overall prediction accuracy without emphasizing
larger errors, and R2 for evaluating how well the
predictions align with the observed data.

Fig. 3. Example of an IDF curve generated for Koya City.
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2.4.2. Calculation of RMSE
The Root Mean Square Error (RMSE) is a widely

used metric to evaluate the accuracy of predictive
models. In the context of this study, RMSE was used
to quantify the difference between the predicted
rainfall intensities (2016e2022) generated by the
SVR models and the actual observed rainfall in-
tensities from 2016 to 2022. The RMSE provides an
indication of how closely the model's predictions
align with the actual data, with lower values indi-
cating better model performance.

2.4.3. Mathematical definition of RMSE
The RMSE is defined as the square root of the

mean of the squared differences between the pre-
dicted and actual values. Mathematically, for a given
duration (di), the RMSE is calculated as follows:

RMSEdi¼ 1
n

Xn

k¼1

ðPk;di �Ak;diÞ2 ð5Þ

where:
n is the number of data points (years) in the pre-

diction period (2016e2022), which is 7 in this case.
P k;d is the predicted rainfall for year k and dura-

tion di.
A k;d is the actual observed rainfall for year k and

duration di.
The RMSE for each duration is computed by first

calculating the squared differences between the
predicted and actual values for each year, taking
their average, and then finding the square root of
this average.

2.4.4. Calculation of MAE
The Mean Absolute Error (MAE) measures the

average magnitude of errors, treating all deviations

equally without emphasizing larger errors. It is
defined as:

MAE¼ 1
n

Xn

k¼1

��Pk;di �Ak;di

��

MAE complements RMSE by offering insight into
the overall accuracy of the model while being less
sensitive to outliers.

2.4.5. Calculation of R2

The Coefficient of Determination (R2) evaluates
how well the model explains the variance in the
observed data. It is calculated as:

R2¼1�
Pn

k¼1ðAk � PkÞ2Pn
k¼1ðAk �AÞ2

Where:
Ak Actual observed value for year.
Pk Predicted value for year k.
Aˉ Mean of actual observed values.
An R2 value closer to 1 indicates better model

performance, while negative values suggest the
model performs worse than predicting the mean of
the observed data.

2.4.6. Interpretation of metrics

� RMSE and MAE together provide a detailed
view of the model's accuracy, with RMSE
emphasizing larger errors and MAE reflecting
average error magnitudes.

� R2 adds a measure of how well the model cap-
tures the variance in the observed data, further
validating its predictive reliability.

By incorporating these metrics, this study en-
sures a robust and transparent evaluation of the

Fig. 4. Flow diagram of Recurrent Neural Networks (RNN), to predict rainfall intensities. LSTMs.
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models, highlighting the superior performance
of RNN-LSTM compared to traditional methods
like Gumbel Distribution, Linear Regression, and
SVR.

2.5. Experimental study

In this study, we evaluated four approaches for
predicting future IDF curves using rainfall data
from Koya City, Iraq, spanning the period
2005e2022. The dataset was divided into two sub-
sets: 2005e2015 for training and 2016e2022 for
validation. The data encompassed various rainfall
durations (5e1440 min) and return periods (2e100
years). The methods assessed were the GD, LR,
SVR, and RNN-LSTM.
The Gumbel Distribution was applied to model

extreme rainfall values by fitting the distribution to
the annual maxima. Linear Regression established a
baseline model, assuming a direct linear relation-
ship between rainfall intensity, duration, and return
period. SVR utilized machine learning to capture
non-linear relationships in the data, optimizing its
parameters to minimize prediction error. The RNN-
LSTM model, leveraging deep learning, excelled at
handling temporal dependencies and capturing
complex rainfall patterns.
To evaluate model performance, three metrics

were used: RMSE, MAE, and R2. RMSE served as
the primary metric, quantifying the difference be-
tween predicted and observed rainfall intensities.
Based on the RMSE results, the RNN-LSTM model
emerged as the best-performing approach, demon-
strating superior accuracy. This model will be used
to forecast future rainfall intensities for the period
2023e2043, utilizing the full dataset (2005e2022) for
model training and calibration.

2.6. Experimental results

In this section, we analyze the performance of four
different predictive models GD, LR, SVR, and RNN
for estimating IDFcurves. Fig. 5 compares the per-
formance of four prediction methods Gumbel Dis-
tribution (GD), Linear Regression (LR), SVR, and
Recurrent Neural Network (RNN) in rainfall in-
tensity prediction. Each method's performance is
evaluated using three metrics: RMSE, MAE, and the
R2. These metrics provide insights into the accuracy,
reliability, and consistency of the predictions, with
lower RMSE and MAE values and higher R2 indi-
cating better performance. Among these methods,
GD and LR represent more traditional statistical
approaches, while SVR and RNN leverage machine
learning for predictive modeling.
As seen in Fig. 5, the results highlight significant

differences in the predictive performance of the four
methods. The Recurrent Neural Network (RNN)
achieves the best results with the lowest RMSE (1.44)
andMAE (0.81041), alongside an impressive R2 value
of 0.99133, indicating high accuracy and reliability. In
contrast, the traditional Gumbel Distribution (GD)
and Linear Regression (LR) methods perform poorly,
with negative R2 values and significantly higher
RMSE and MAE, reflecting limited predictive capa-
bility. SVR performs reasonably well with an RMSE
of 6.19 and R2 of �0.17, but it is outperformed by the
RNN in all metrics, underscoring the superiority of
deep learning in handling complex rainfall predic-
tion tasks.

2.7. IDF curves: real vs. predicted

To evaluate the performance of each method, we
compare the IDF curves generated by each model

Fig. 5. Histograms of error metrics for prediction methods.
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with the actual IDF curve derived from historical
data. Figs. 6e9 shows the Real vs. Predicted IDF
Curves for GD, LR, SVR, and RNN.
In each of these figures, the x-axis represents the

duration (in minutes), and the y-axis represents the
intensity (in mm/hr). The real IDF curve (based on
historical data) is plotted alongside the predicted
IDF curve from each model. This visual comparison
allows us to see where each model deviates from the
actual data, providing insight into the strengths and
weaknesses of each method.

2.8. Predictions

Fig. 10 presents a comparison of IDF curves for
historical rainfall intensity from 2005 to 2022 with
predicted intensities for 2023e2043. The analysis
indicates that significant changes in rainfall pat-
terns are expected in the coming decades. The
predictive models consistently show an upward
trend in both the frequency and intensity of
extreme rainfall events, highlighting the increasing
risk of flooding. These findings suggest a pressing

Fig. 6. IDF Curve e Actual and Gumbel Distribution (GD) (2016e2022).

Fig. 7. IDF Curve e Actual and Linear Regression (LR).
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need for updated infrastructure planning and
enhanced water resource management strategies.
The predictions emphasize the critical importance
of implementing adaptive measures to mitigate the
impacts of climate change on both urban and rural
environments.

2.9. Comparison of methods

The four models analyzed in this study GD, LR,
SVR, RNN differ notably in their predictive capa-
bilities for IDF curves. Among these, the RNN
model demonstrates superior performance, with a

Fig. 8. IDF Curve e Actual and SVR.

Fig. 9. IDF Curve - Actual and Recurrent Neural Network (RNN).
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significantly lower RMSE and a predicted IDF curve
that closely matches the actual data, as seen in Fig. 4.
In contrast, the GD and LR models exhibit higher
RMSE values and less accurate IDF curves (Figs. 1
and 2), suggesting they struggle to capture the non-
linear complexities inherent in the data. The SVR
model performs better than GD and LR but still
does not match the accuracy of the RNN model,
indicating that while SVR can handle some non-
linearities, it may not fully capture the intricate de-
pendencies present in the data (Fig. 3).

2.9.10. Focus on RMSE results

The RMSE is a key metric for assessing the ac-
curacy of predictive models, reflecting the average
error between observed and predicted values. The
RNN model's exceptionally low RMSE (1.44) is
corroborated by its IDF curve (Fig. 4), which aligns
closely with the actual data. This strong alignment
underscores the RNN model's ability to generalize
effectively from training data, making it the most
reliable choice for future predictions.
In contrast, the higher RMSE values for the GD

and LR models indicate lower predictive accuracy,
as evidenced by the discrepancies between their

predicted and actual IDF curves (Figs. 1 and 2).
These models are less adept at forecasting future
rainfall intensities, particularly when faced with
complex, non-linear data patterns.

3. Discussion and Conclusions

This study offers critical insights into projected
changes in rainfall intensity and frequency over the
next two decades, specifically tailored to the unique
climate patterns and data constraints of Koya City.
Through the application of an RNN-LSTM, the
study underscores the model's robustness and
effectiveness for predicting future IDF curves,
especially important in the context of climate
change, where complex and non-linear de-
pendencies are expected to increase. The adapt-
ability of the LSTM model to limited datasets
highlights its suitability for regions like Koya City,
where data scarcity and challenging mountainous
terrain limit traditional modeling approaches. The
analysis predicts an increase in short-duration,
high-intensity rainfall events, pointing to a height-
ened risk of flash floods and prompting a need to
reassess current flood prevention strategies and
infrastructure resilience. Conversely, the expected
decrease in long-duration rainfall events may

Fig. 10. IDF curves for historical rainfall intensity from 2005 to 2022 with predicted intensities for 2023e2043.
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impact water resource management, particularly in
sustaining water supplies during prolonged dry
spells. These region-specific insights emphasize the
need for adaptive infrastructure to respond to
evolving rainfall patterns effectively.
Comparing four predictive models GD, LR, SVR,

and RNN-LSTM revealed notable differences in
performance across three key metrics: RMSE,MAE,
and R2. Among these, the RNN-LSTM model
consistently achieved the best results with the
lowest RMSE (1.44 mm/hr) and MAE (0.81 mm/hr),
and the highest R2 (0.99), demonstrating superior
alignment between predicted and historical IDF
curves. In contrast, GD and LR performed poorly
with significantly higher RMSE (9.13 and 10.76 mm/
hr, respectively) and negative R2 values, reflecting
their limitations in capturing temporal trends. SVR
provided moderate performance, with RMSE and
MAE values of 6.19 mm/hr and 5.38 mm/hr,
respectively, but it was outperformed by RNN-
LSTM in all metrics.
The practical implications of these findings are

significant. The RNN-LSTM model's ability to adapt
to limited datasets and capture intricate rainfall dy-
namics underscores its utility for regions like Koya
City, where data availability and variability pose
challenges. By identifying future rainfall patterns
with greater precision, the RNN-LSTM model sup-
ports informed decision-making in stormwater
management and flood mitigation planning. Its su-
perior accuracy in predicting short-duration, high-
intensity events is particularly valuable for designing
resilient urban infrastructure capable of mitigating
flash flood risks. Furthermore, the model's ability to
predict long-term trends supports sustainable water
resource management, particularly in adapting to
shifts in prolonged rainfall events.
This study's unique contribution lies in its

application of RNN-LSTM modeling within a data-
limited, region-specific context like Koya City.
Through model optimization, including hyper-
parameter tuning, regularization, and validation
adjustments, the research illustrates how deep
learning can support flood risk management in
challenging environments. Building on findings
from [21], which suggest potential gains from adap-
tive learning rates or seasonal adjustments, future
studies could consider these methods to improve
model adaptability in regions with variable climates.
Overall, the findings highlight the vital role of

advanced machine learning models, particularly
RNN-LSTM, in environmental forecasting and
strategic planning. By integrating these predictive
tools into urban and environmental planning,
communities can construct resilient infrastructure,

mitigate flood risks, and manage water resources
sustainably in the face of increasingly unpredictable
climate patterns.
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