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ORIGINAL ARTICLE
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Palsy Using Deep Learning
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Najjah Salwa Abd Razak e, Mohd Arif Dar f,**

a Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia
b Cyber Security and Digital Industrial Revolution Centre, National Defence University of Malaysia, Kuala Lumpur, Malaysia
c Department of Information Technology, University of the Cumberlands USA, USA
d Department of Management, Faculty of Defence Studies and Management, National Defence University of Malaysia, Kuala Lumpur,
Malaysia
e Department of Language and Culture, Language Centre, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala
Lumpur, Malaysia
f Center of Ionics, Department of Physic, University of Malaya, Kula Lampur 50603, Malaysia

Abstract

Cerebral palsy (CP), a neurological disorder that affects children and can occasionally result in cognitive problems as
well as deficits in motor function can be caused by prenatal, perinatal, or postnatal factors. Each subtype of cerebral palsy
(CP), such as spastic and non-spastic cerebral palsy, has distinct symptoms based on the location of the brain lesion and
how it affects muscle tone. Individualized therapy and rehabilitation programs are necessary to treat these differences
effectively. Therefore, early-stage CP categorization is crucial to ensuring timely and targeted treatment efforts. The
functional magnetic resonance imaging (fMRI) of the infant's brain is a helpful technique for CP imaging and early
detection. This research uses a deep convolutional neural network (CNN) based on a modified AlexNet architecture to
classify CP subtypes using newborn fMRI data. The modified AlexNet architecture gives an accuracy 79.5 % which is
better than the results obtained through GoogleNet, AlexNET and LeNet models. This methodology aims to assist
healthcare providers in developing more targeted recuperation programs, which will ultimately improve the lives of
affected teenagers.

Keywords: Cerebral palsy classification, Functional MRI, Deep convolutional neural network, AlexNet architecture, Early
diagnosis and rehabilitation

1. Introduction

C P is a neurological disorder that can be caused
by a non-progressive brain injury or anomaly

during brain development, usually in premature
neonates. It mostly affects motor functions and
muscle coordination. There are two important CP
that are spastic and non-spastic [1]. Spastic cerebral
palsy is the most common type of cerebral palsy,
characterized by increased muscle tone, which leads

to stiffness and difficulty with movement. Symp-
toms vary depending on the severity and the areas
of the body affected. Children with spastic cerebral
palsy often experience muscle tightness that limits
their range of motion, making movements jerky or
stubborn. This stiffness can affect specific parts of
the body, such as the legs (spastic diplegia), one side
of the body (spastic hemiplegia), or the entire body
(spastic quadriplegia). Common symptoms include
difficulty walking, where children may scissor their
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legs or walk on their toes due to tight leg muscles
[2]. Non-spastic cerebral palsy encompasses types of
CP that involve decreased or changeable muscle
tone, resulting in challenges with voluntary and
controlled movements. This category includes
dyskinetic and ataxic cerebral palsy, each with
distinct symptoms. Dyskinetic CP is characterized
by involuntary movements, which may be slow and
writhing (athetosis) or sudden and jerky (dystonia).
These movements often affect the face, arms, and
legs, making speaking, eating, or writing difficult [3].
As per the World Health Organization (WHO), the
estimated frequency of cerebral palsy is 3.8 %
among Indians and 10 % worldwide. Since cerebral
palsy can cause a lack of initial motor or cognitive
development, diagnosing the disorder in newborns
can be challenging. Early diagnosis, particularly
before the critical developmental phase, is essential
for successful rehabilitation, such as oculomotor
therapy, which boosts neuroplasticity and enhances
the child's quality of life [4].
Early categorization of CP plays a critical role in

determining treatment outcomes, as it enables
tailored interventions that address the specific needs
of the individual. Identifying the type, severity, and
distribution of CP early helps clinicians design
personalized therapeutic plans, including physical
therapy, occupational therapy, and medical in-
volvements, to optimize motor function, reduce
complications, and improve whole quality of life. For
instance, children diagnosed early with spastic CP
can benefit from targeted interventions to manage
muscle stiffness and prevent contractures, while
those with dyskinetic CP can receive therapies
focusing on movement control and posture [5]. Early
categorization also facilitates the implementation of
assistive technologies, medications, and, if necessary,
surgical options at the most effective developmental
stages. Furthermore, it allows for the timely inclusion
of families in educational and support programs,
ensuring they are equipped to manage their child's
unique challenges [6]. Neuroimaging methods like
Positron Emission Tomography (PET) and Functional
Magnetic Resonance Imaging (fMRI) can be used to
comprehend how the brain functions. Since fMRI is
exclusively helpful for studying the remodeling of
neural connections after early brain injury, it is a
crucial tool for understanding neuroplasticity.
Nevertheless, there are challenges when using fMRI
on neonates, including head instability and anatom-
ical variations that complicate the classification and
interpretation of data [7]. fMRI data integrates with
convolutional neural networks (CNNs) for classifica-
tion by leveraging the spatial and temporal patterns
in brain activity to identify meaningful features. fMRI

captures voxel-level signals that reflect neural activ-
ity, providing high-dimensional data that represent
changes in blood oxygenation levels over time. To
process this complex data, CNNs, known for their
ability to extract spatial hierarchies of features, are
employed. The integration beginswith preprocessing
steps such as motion correction, spatial normaliza-
tion, and smoothing, which ensure that the fMRI data
is aligned and standardized. The processed data is
then reshaped into 2D or 3D arrays that serve as input
to the CNN [8]. These arrays preserve the spatial
structure of the brain, enabling CNNs to analyze
localized patterns of activity across regions. Layers of
the CNN sequentially extract features, from low-level
patterns (e.g., voxel intensity variations) to high-level
abstractions (e.g., region-specific activation maps).
Temporal information, critical in fMRI, can also be
integrated through techniques like 3D-CNNs or by
combining CNNs with recurrent neural networks
(RNNs) to capture dynamic activity over time. The
CNN learns to classify brain states, diseases, or
cognitive tasks based on these patterns, enabling
robust and automated analysis of complex fMRI
datasets [9].
CNNs play a transformative role in designing

personalized therapies by extracting and analyzing
detailed patterns from complex medical data, such as
medical imaging and physiological signals. CNNs are
particularly adept at identifying subtle features in
diagnostic images like MRI, CT scans, or X-rays that
may be imperceptible to the human eye [10]. By
leveraging this capability, they can detect specific
biomarkers or abnormalities, enabling precise diag-
nosis and stratification of patients based on their
unique conditions. For example, in neurological dis-
orders, CNNs can analyze brain imaging data to
identify region-specific damage or altered connectiv-
ity, aiding in the customization of targeted therapies
like neurostimulation or rehabilitation exercises. In
oncology, CNNs can evaluate tumor characteristics,
such as size, location, and aggressiveness, guiding
personalized treatment plans that combine surgery,
chemotherapy, or radiation [11].Moreover, CNNs can
integrate multimodal data, such as genetic profiles
and clinical history, to predict individual responses to
specific treatments, ensuring more effective out-
comes. This data-driven approach reduces the trial-
and-error process often involved in therapy design,
minimizes side effects, and optimizes resource allo-
cation. By tailoring therapies to the unique needs of
each patient, CNNs contribute to a more precise and
effective healthcare system, improving quality of life
and treatment success rates [12].
The severity of periventricular leukomalacia (PVL)

abnormalities, such as ventricular dilatation,
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enlargement of the interhemispheric fissure, and
bleeding, is the main emphasis of the cerebral palsy
categorization systems that are now in use. These
approaches mostly depend on MRI scans. Although
some studies use motor abnormalities (such as
diplegia, dyskinesia, and spasticity) to categorize
children with cerebral palsy, these approaches are
most effective when applied to children between the
ages of 2 and 6. Since gross motor capabilities are
challenging to evaluate at this early age, there are
few methods for categorizing cerebral palsy in
newborns under the age of two.
This study compares fMRI outcomes with oculo-

motor responses in newborns six to twelve weeks
old to identify cerebral palsy. In addition, it uses a
deep neural network to categorize different forms of
cerebral palsy, such as dyskinetic, ataxic, mixed, and
spastic. A three-layer deep neural network trained
using TensorFlow is utilized to classify the kind of
cerebral palsy after the fMRI images are processed
via a fuzzy adaptive filter to lessen noise. After
examining the photos, the classification approach
produced better results in recognizing the different
kinds of CP. Further, the research issues and liter-
ature in the field of cerebral palsy categorization,
suggested techniques, and findings are explained.

2. Related works

Beginning in the early 1940s, studies on cerebral
palsy revealed that it was a major cause of children's
stunted growth. By the late 1950s, research on chil-
dren with cerebral palsy-particularly those under
the age of nine-had focused on how these young-
sters processed information cognitively. Studies
conducted in the 1960s brought attention to lin-
guistic impairments in afflicted children, and by the
1970s, attempts were underway to investigate the
etiology of cerebral palsy by examining the medical
records of people with intellectual disabilities.
Grants from state health departments and public
health agencies frequently funded these early in-
vestigations [13]. Muscle control significantly
improved in children with cerebral palsy when
biofeedback training was employed to enhance
motor activities, according to study conducted in the
1980s. The focus of research by the early 1990s was
on how the illness affects children's motor skills and
their physiological fitness. A systematic method of
categorization for gross motor function in children
with cerebral palsy was needed, and this was real-
ized around the year 2000.
To close the gap between clinical research and

patient treatment, a research registry was estab-
lished in 2011 to promote more thorough

investigations on cerebral palsy. Current studies
have looked at the neurophysiological characteris-
tics of kids with cerebral palsy and analyzed de-
velopments in pediatric cognitive rehabilitation. In
an attempt to better understand the variations in
gross motor function, new indices for evaluating
bodily functions in subgroups of children with the
disease were also developed. The usefulness of
multilayer soft tissue operations in increasing pa-
tients' active mobility was assessed in surgical de-
velopments. Early in the new millennium, research
examined the relationship between anomalies in the
visual evoked potential (VEP) and brainstem audi-
tory evoked potential (BAEP) in children with
spastic cerebral palsy [14]. Studying the clinical
trends and co-occurring conditions in impacted kids
revealed that the most prevalent kind of cerebral
palsy was spastic, with hypotonic, dystonic, and
mixed types coming in second and third, respec-
tively. With a male to female ratio of 1:2, the average
age of diagnosis was almost two years. Studies have
also looked at how cerebral palsy affects children's
and families' health-related quality of life (HRQOL),
with an emphasis on the connection between
HRQOL and gross motor impairment [15]. Consid-
erable advancements in patient-centered medical
therapies have been acknowledged by the Indian
Academy of Cerebral Palsy Rehabilitation Council.
Still, comprehensive study and well-documented
materials are required, particularly to assist with
restoration initiatives in rural regions [16]. Classi-
fying cerebral palsy effectively using fMRI remains
a challenge, despite advancements in the field of
cerebral palsy research. Greater anatomical infor-
mation is needed to fully understand the intricacy of
functional brain connections. In order to enable
early therapy and efficient rehabilitation planning,
these issues underscore the need for more reliable
techniques to evaluate fMRI data from newborns,
accounting for the complex changes in neurons [17].

2.1. Overview of fMRI

Functional magnetic resonance imaging (fMRI), a
non-invasive technique, can measure brain activity
by tracking changes in blood flow. Functional mag-
netic resonance imaging (fMRI) is a useful medical
diagnostic technique because of its high spatial res-
olution and dependence on the Blood Oxygen Level
Dependency (BOLD) of brain cells. The image
quality is improved by applying spin echo pulses
that are in line with the magnetic field's intensity and
repeated stimuli. For this study, fMRI images of
children with cerebral palsy were collected. Because
of the complexity and non-linearity of the BOLD
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signal, preprocessing is necessary to remove noise,
such as that created during photo attainment or by
the kid subjects themselves. Thermal noise increases
with the strength of the magnetic field and is
reduced by using vague adaptive filters.

2.2. Fuzzy adaptive filtering

Fuzzy adaptive filtering, a more advanced version
of traditional median filters, enriches image quality
by eliminating unnecessary features and lowering
noise without compromising important details. This
technique substitutes the median value based on the
levels of local noise for pixels affected by noise by
comparing the intensity of each pixel to that of its
neighbors. To gauge the quality of the noise-free
image, the mean square error is calculated during
the procedure [18]. Deep learning networks with
convolution, pooling, and stacking layers employ
the noise-free pictures in their training phase.

2.3. Deep learning and CNN

Throughout the 1990s, computer-aided diagnosis
has played a crucial role in medical imaging, and
convolutional neural networks (CNN) have made
recent advances in this sector improve classifica-
tions across a range of medical specialties. The ca-
pacity of CNNs to transmit learnt features across
layers, improving picture classification accuracy,
makes them popular in image analysis. Examples of
these CNNs include LeNet, AlexNet, and
GoogLeNet.
In order to expedite training and prevent over-

fitting, this study uses a modified version of the
AlexNet architecture that integrates non-linearity
via ReLU. The design uses pooling layers to mini-
mize the size of the picture while maintaining
important features and five convolution layers for
local feature detection. The max pooling layers
choose features from both overlapping and non-
overlapping neighbors, which leads to a more
compact representation and improves translation
invariance.
Regression or softmax layer produces the pre-

dicted output at the end, and back propagation
(BPN) method trains CNN to minimize the cost
function and increase classification accuracy.
In huge datasets, object recognition using deep

learning a subset of machine learning has gained
popularity lately. In order to do this, artificial neural
networks are built with more layers, each of which is
intended to extract unique elements that raise the
accuracy of picture categorization. Subclasses are
created from the preprocessed pictures in order to

compute gradients, which lowers the volume of data
overall and allows for parallel processing, which
expedites calculation [19].
Deep learning uses Convolutional Neural Nets

(CNNs) extensively for image categorization. CNNs
and conventional feedforward neural networks are
similar, but their layer connections are different.
While feedforward networks may remove certain
nodes in order to minimize complexity, CNNs have
all nodes connecting neighboring layers, which can
cause issues like overfitting and sluggish training
times. CNNs add convolution and pooling layers to
solve these problems. A tiny fraction of the pre-
ceding layer, usually 3 � 3 or 5 � 5, is taken up
by the convolution layer to concentrate on impor-
tant features, while the pooling layer shrinks
the matrix size, reducing the number of parameters
and boosting computing efficiency to prevent
overfitting.

2.4. Key layers in CNNs

Convolution Layer: The feature extraction pro-
cess is handled by this layer. Convolution layer
neurons create feature maps, with predefined
weights connecting each map to nearby neurons in
the preceding layer. Despite being the same for
every feature map, these weights enable the
extraction of distinct features at varied intensities.
The following formula yields the feature map
output: Yn ¼ f (Wn*x)Y_n ¼ f(W_n * x)
Yn ¼ f(Wn*x) (1) is the formula in which non-linear
features are extracted from the input by a non-
linear activation function f(.)f(.)f(.), the input is xxx,
and the convolution window for the nth feature
map is WnW_nWn
Pooling Layer: This layer improves spatial

invariance to input distortions while decreasing the
feature maps' spatial resolution. It either employs
max pooling, which chooses the neighborhood's
maximum value, or average pooling, which passes
the average value of a small neighborhood to the
following layer [20].
Stacked Layers: Several convolution and pooling

layers are placed on top of one another to capture
increasingly intricate characteristics. A softmax
operator, which is frequently employed in
conjunction with the Back Propagation Training
(BPT) method for classification issues, is utilized to
produce the final classification. The multidimen-
sional vector that the softmax output creates nor-
malizes class scores into probabilities between 0 and
1. Softmax's ability to divide the network's confi-
dence among many classes makes it very useful for
picture classification problems [21].
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3. Methodology

This study aims to enhance rehabilitation plan-
ning by improving the early diagnosis of cerebral
palsy, especially in babies between the ages of six
and sixteen months. The technique tackles the cur-
rent difficulties in fMRI analysis and gross motor
response correlation [22]. The suggested method
makes use of a modified version of the AlexNet
architecture, which consists of two completely
linked layers after five convolution layers. To map

feature units and normalize local responses per four
pixels, the first convolution layer has a 12 � 12
kernel size. This produces ninety-six feature maps.
After that, there is a second convolution layer and a
pooling layer with a kernel size of 6 and a stride rate
of 2. The pooling and convolution processes result
in two fully connected layers that perform corrected
linear computations and 4096 feature maps are
produced using this structure for each input image.
Fig. 1 shows the schematic diagram of the proposed
work.

4. Results

Infants' fMRI data were gathered from a number
of publicly available neuroimaging databases, such
as OpenNeuro, StarPlus fMRI, CRCNS, and OASIS.
Fuzzy adaptive mean filtering was used to prepro-
cess these photos in order to eliminate drift com-
ponents, seasonal changes, and noise.

4.1. Testing and training

The training step employed the datasets that were
procured from various web-based sources. The
datasets were classified by the kind of cerebral palsy
and the age of the newborns, even though particular
categorization isn't usually required in machine
learning because the goal of this research is to
classify medical photographs. Fig. 2 displays sample
fMRI scans of newborns with different forms of ce-
rebral palsy [23] and Fig. 3 show the recent advances
in cerebral palsy [24].

4.2. Pre-training

TensorFlow is an open-source framework that
provides multilayer neural network constructionFig. 1. schematic diagram of the proposed work.

Fig. 2. fMRI scans of newborns with different forms of cerebral palsy [23].
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and training capabilities, and it was used in the
experimentation. For training and testing purposes,
a total of 217 fMRI scans and 120 pictures were
utilized. The softmax function was utilized to
transform the CNN output nodes into class proba-
bilities, and the loss function represented the error
between the anticipated and actual output classes.
The scarcity of labeled datasets is a significant
obstacle to CNN model training for medical image
analysis. Few fMRI datasets are accessible for study,
including CRCNS, StarPlus fMRI, and neuro-
imaging data. As indicated in Table 1 and the bar
diagram shown in Fig. 4, the final output layers were
trained using real-time fMRI scans from the Cere-
bral Palsy Society. The neural network was trained
again and again until the loss function was reduced
by changing the weights. The training loss was
mapped against iterations to gauge progress. As
shown each iteration employed 20 photos, and the
accuracy of each dataset was monitored in
conjunction with the loss function transfer learning
was used to overcome the shortcomings of limited
datasets. Assuming that important visual charac-
teristics are shared throughout the datasets, weights
from bigger datasets were utilized to train the
smaller dataset [25e28].
Whereas transfer learning offers significant ad-

vantages, such as leveraging pre-trained models to
address tasks with limited data, it has notable limi-
tations in such scenarios. One key challenge is that
the pre-trained model may not generalize well to the
new domain if the source and target datasets differ

significantly in features or distribution. For instance,
a model trained on natural images (e.g., ImageNet)
may struggle to adapt to medical imaging data due to
differences in textures, shapes, and content, poten-
tially leading to suboptimal performance. Another
limitation is the risk of overfitting, particularly when
the target dataset is very small. Fine-tuning the pre-
trained model with insufficient data can cause it to
memorize specific examples instead of learning
generalized patterns. This issue is exacerbated if the
original model is overly complex, as its vast number
of parameters requires a substantial amount of data
to adjust effectively. Additionally, transfer learning
can introduce biases from the source model, which
may not align with the target task's requirements. For
example, pre-trained models might inadvertently
carry biases from their training data, leading to
skewed results in the new application. Lastly,
computational demands for fine-tuning can be high,
especially for large models, making it resource-
intensive even when data is scarce. These limitations
highlight the need for careful adaptation techniques
and domain-specific adjustments.

4.3. Comparative result analysis

There were training and testing phases in the
research experiment, and each set ran for 150
epochs. Accuracy increased and loss reduced as
training went on. Because fMRI data is time-series
and 3D, classifying it has proven to be more difficult
than typical MRI image training. The three-layer
CNN model yielded the maximum accuracy of
66.8 % with concentrated hyper parameter optimi-
zation; improved convergence was observed with
double the length of data. By grouping the photos
into five groups of twenty images each, a confusion
matrix was used to assess the algorithm's perfor-
mance. As seen in Table 2 and the bar diagram
shown in Fig. 5, the confusion matrix helped

Fig. 3. Recent advances in cerebral palsy [24].

Table 1. Final output layers.

Image Category Training Test Total

Spastic 89 44 133
Dyskinetic 54 25 79
Ataxic 26 17 43
Mixed 48 34 82
Total 217 120 337
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determine the proportion of pictures that were
accurately categorized by kind of cerebral palsy.
With a modified deep learning model, our goal in
this work was to improve the classification accuracy
of fMRI pictures of newborns with cerebral palsy
(CP). True Positives (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN) were the
measures used to assess the performance. The ca-
pacity of the system to properly or erroneously
categorize fMRI pictures depending on the inputs
produced distinct findings for each test run. The
results from three test instances are summarized
here:
Let's explore the meaning of these values now.

Assume you are examining a collection of fMRI
scans. When a picture is accurately categorized as
being impacted by CP, it is said to have a True
Positive (TP). This is when the algorithm performs
best. Case 1 yielded 14 correctly identified photos,
while Case 2 produced an astounding 18 correctly
categorized images. Conversely, False Positives (FP)
happen when the system incorrectly marks a picture
as impacted by CP when it isn't. The algorithm
produced three of these mistakes in Case 1, but only
one in Case 2, suggesting better model performance.
Likewise, True Negatives (TN) record the frequency
with which the system appropriately classifies

photos as unaffected. In Case 1, it successfully
identified four objects, matching Case 3 in terms of
accurately named unaffected photos. However, no
algorithm is flawless. The photos influenced by CP
that escaped the algorithm's grasp and were incor-
rectly labeled are known as False Negatives (FN).
Cases 1 and 2 performed better in identifying
impacted photographs than Case 3, which had the
most of these three.

4.3.1. Understanding key metrics
Three key criteria were utilized to assess

the model's performance: accuracy, recall, and
precision.

� To calculate Precision, divide the total number
of instances categorized as positive (TP þ FP)
by the number of properly detected positive
cases (TP). This statistic aids in our compre-
hension of how trustworthy the algorithm is
when it indicates that CP has an impact on a
picture.

� By dividing the total real positives (TP þ FN) by
the true positives (TP), Recall provides an esti-
mate of the model's accuracy in identifying all
genuine instances of cystic fibrosis.

� The most widely known indicator, Accuracy,
determines the percentage of positive and
negative pictures in the dataset that were prop-
erly identified.

4.3.2. Experimental Results
This shows how automated algorithms may

help improve the precision of diagnosis. We next

Total
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Training

Fig. 4. Final output layers.

Table 2. Confusion matrix for three test cases.

Details Case 1 Case 2 Case 3

TP 14 18 13
FP 3 1 3
TN 4 3 4
FN 2 2 3
Accuracy 0.78 0.89 0.76
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contrasted our findings with those of other well-
known models, including LeNet, AlexNet, and
GoogleNet. How our Modified AlexNet fared in
evaluation to various models is displayed in the
following Table 3 and bar diagram Fig. 6. The results

validate that, in terms of test validity and accuracy,
our modified AlexNet performed better than the
others. The model shown significant ability to clas-
sify cerebral palsy with remarkable accuracy by
adjusting the number of convolutional layers, kernel

Fig. 5. Confusion Matrix for Three Test Cases.

Table 3. Comparative performance of various models.

Method Runtime (sec) Training Loss Validation Accuracy (%) Test Accuracy (%)

GoogleNet 1750 1.7 68 66
AlexNet 35,470 1.5 76 72
LeNet 54,600 1.6 55 57
Modified AlexNet 16,950 0.85 82.1 79.5

Fig. 6. Comparative Performance of Various Models.
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size, and stride rate. There is still opportunity for
progress, thus the search is far from over. Never-
theless, this research provides reassuring proof that
customized deep learning models, such as the
Altered AlexNet, can revolutionize medical imaging
by enabling more precise diagnosis and even help-
ing radiologists make verdicts more quickly.

5. Conclusion and Future Scope

In this work, we introduce a novel design for a
convolutional neural network (CNN) based on
AlexNet to grow the classification accuracy of fMRI
brain images in neonates with cerebral palsy. Our
model enhances picture classification accuracy and
precision by using 5 convolutional layers and
stacked pooling layers. These experimental results
validate that our suggested deep learning network
outperforms existing methods and efficiently ad-
dresses the difficulties in obtaining fMRI data from
neonates. The rich features gleaned from the limited
number of samples pointedly aided in the accurate
classification of cerebral palsy, despite the limited
availability of medical imaging datasets due to pri-
vacy and security concerns. We intend to expand on
this study in the future by developing a broader
network that classifies the many types of cerebral
palsy. This will involve integrating fMRI data with
oculomotor response measurements to enhance
classification precision and provide a more thor-
ough knowledge of the disorder.

Ethics information

None.

Authors’ contributions

Md Anjar Ahsan: Conceptualization, methodol-
ogy, visualization, writing-original draft.
Mohd Arif Dar: Conceptualization, Review and

Editing.
Dr. Hassan bin Mohammed: Methodology, Re-

view and Editing.
Dr. Abhilash Maroju: Visualization, software.
Nurhafizah Moziyana Mohd Yusop: Resources.
Wan Su Emi Yusnita Wan Yusof: Resources.
Najjah Salwa Abd Razak: Resources.

AI usage declaration

None.

Funding

There is no funding.

Conflict of interest

The authors state that they do not have any con-
flicts of interest to disclose in relation to this work.

Acknowledgment

The authors sincerely acknowledge the support
and contributions of their university and all indi-
viduals who assisted in the completion of this study.

References

[1] Himpens E, Van den Broeck C, Oostra A, Calders P,
Vanhaesebrouck PMDP. Prevalence, type, distribution, and
severity of cerebral palsy in relation to gestational age: a
meta-analytic review. Dev Med Child Neurol 2008;50(5):
334e40. https://doi.org/10.1111/j.1469-8749.2008.02047.x.

[2] Tjahjono NM. Development and design of a toy for children
with cerebral palsy, emphasizing arm movement (Doctoral
dissertation, UNSW Sydney). 2001. https://doi.org/10.26190/
unsworks/10051.

[3] Ballester Plan�e J. Beyond the motor impairment in dys-
kinetic cerebral palsy: neuropsychological and connectome-
based approach. 2018. http://hdl.handle.net/10803/665520.

[4] Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral
palsy in children: a clinical overview. Transl Pediatr 2020;
9(Suppl 1):S125. https://doi.org/10.21037/tp.2020.01.01.

[5] Council on Children With Disabilities, Section on Develop-
mental Behavioral Pediatrics, Bright Futures Steering Com-
mittee, & Medical Home Initiatives for Children With
Special Needs Project Advisory Committee. Identifying in-
fants and young children with developmental disorders in
the medical home: an algorithm for developmental surveil-
lance and screening. Pediatrics 2006;118(1):405e20. https://
doi.org/10.1542/peds.2006-1231.

[6] Slough C, Masters SC, Hurley RA, Taber KH. Clinical posi-
tron emission tomography (PET) neuroimaging: advantages
and limitations as a diagnostic tool. J Neuropsychiatry Clin
Neurosci 2016;28(2):A4e71. https://doi.org/10.1176/appi.neu-
ropsych.16030044.

[7] Alharthi AG, Alzahrani SM. Do it the transformer way: a
comprehensive review of brain and vision transformers for
autism spectrum disorder diagnosis and classification.
Comput Biol Med 2023:107667. https://doi.org/10.1016/j.
compbiomed.2023.107667.

[8] Mattioni S, Rezk M, Gao X, Nam J, Liu ZX, Gau R, et al.
Impact of a transient neonatal visual deprivation on the
development of the ventral occipito-temporal cortex in
humans. bioRxiv 2024;2024-11. https://doi.org/10.1101/2024.
11.30.625697.

[9] Islam MS, Al Farid F, Shamrat FJM, Islam MN, Rashid M,
Bari BS, et al. Challenges issues and future recommendations
ofdeep learning techniques for SARS-CoV-2detectionutilising
X-ray and CT images: a comprehensive review. PeerJ Comput
Sci 2024;10:e2517. https://doi.org/10.7717/peerj-cs.2517.

[10] Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A,
Abedalthagafi M. Artificial intelligence in neuro-oncology:
advances and challenges in brain tumor diagnosis, prog-
nosis, and precision treatment. NPJ Precis Oncol 2024;8(1):80.
https://doi.org/10.1038/s41698-024-00575-0.

[11] Yu H, Yang LT, Zhang Q, Armstrong D, Deen MJ. Con-
volutional neural networks for medical image analysis: state-
of-the-art, comparisons, improvement and perspectives.
Neurocomputing 2021;444:92e110. https://doi.org/10.1016/j.
neucom.2020.04.157.

[12] Kavya Y, Sofana S. Abnormal gait classification in children
with cerebral palsy using ConvLSTM hybrid model and
GAN. In: IEEE access. 12; 2024. p. 117721e36. https://doi.org/
10.1109/ACCESS.2024.3439889.

110 M.A. Ahsan et al. / Polytechnic Journal 15 (2025) 102e111

https://doi.org/10.1111/j.1469-8749.2008.02047.x
https://doi.org/10.26190/unsworks/10051
https://doi.org/10.26190/unsworks/10051
http://hdl.handle.net/10803/665520
https://doi.org/10.21037/tp.2020.01.01
https://doi.org/10.1542/peds.2006-1231
https://doi.org/10.1542/peds.2006-1231
https://doi.org/10.1176/appi.neuropsych.16030044
https://doi.org/10.1176/appi.neuropsych.16030044
https://doi.org/10.1016/j.compbiomed.2023.107667
https://doi.org/10.1016/j.compbiomed.2023.107667
https://doi.org/10.1101/2024.11.30.625697
https://doi.org/10.1101/2024.11.30.625697
https://doi.org/10.7717/peerj-cs.2517
https://doi.org/10.1038/s41698-024-00575-0
https://doi.org/10.1016/j.neucom.2020.04.157
https://doi.org/10.1016/j.neucom.2020.04.157
https://doi.org/10.1109/ACCESS.2024.3439889
https://doi.org/10.1109/ACCESS.2024.3439889


[13] Xu W, Dai H, Li R, Li M, Yang D. Human-machine analysis
and optimization design of lower limb trainer for children
with cerebral palsy based on JACK virtual simulation. In:
IEEE 7th Eurasian Conference on Educational Innovation
(ECEI), Bangkok, Thailand; 2024. p. 211e6. https://doi.org/10.
1109/ECEI60433.2024.10510804.

[14] Tagoe EA, Fang Y, Williams JR, Lerner ZF. Walking on
real-world terrain with an ankle exoskeleton in cerebral
palsy. In: IEEE transactions on medical robotics and bio-
nics. 6; 2024. p. 202e12. https://doi.org/10.1109/TMRB.2023.
3328649.

[15] Poojari MC, Maniyeri R, Chemmangat K, Ameen P. Kine-
matic study of a novel active knee exoskeleton for alleviating
crouch gait in individuals with cerebral palsy. In: 2024 in-
ternational conference on Advances in Modern Age Tech-
nologies for Health and Engineering science (AMATHE),
Shivamogga, India; 2024. p. 1e8. https://doi.org/10.1109/
AMATHE61652.2024.10582228.

[16] Zhao P. Computer vision for gait assessment in cerebral
palsy: metric learning and confidence estimation. In: IEEE
transactions on neural systems and rehabilitation engineer-
ing. 32; 2024. p. 2336e45. https://doi.org/10.1109/TNSRE.2024.
3416159.

[17] Cao W. Exoskeleton-based lower limb rehabilitation robot
design and simulation for children with cerebral palsy. In:
2024 World Rehabilitation Robot Convention (WRRC),
Shanghai, China; 2024. p. 1e6. https://doi.org/10.1109/
WRRC62201.2024.10696836.

[18] Willaert J, Desloovere K, Campenhout A, Ting LH, Groote F.
Identification of neural and non-neural origins of joint
hyper-resistance based on a novel neuromechanical model.
In: IEEE transactions on neural systems and rehabilitation
engineering. 32; 2024. p. 1435e44. https://doi.org/10.1109/
TNSRE.2024.3381739.

[19] Bowersock C. D, Lerner Z. F. Feasibility of using autonomous
ankle exoskeletons to augment community walking in cere-
bral palsy. in IEEE open journal of engineering in medicine
and biology. doi: 10.1109/OJEMB.2024.3475911.

[20] Pirborj LM, Alnajjar F, Shafigh S. Empowering helpers:
reversing roles in paediatric rehab with humanoid robots

and sensory games. In: International conference on Intelli-
gent Environments (IE), Ljubljana, Slovenia; 2024. p. 105e8.
https://doi.org/10.1109/IE61493.2024.10599914.

[21] Mittal K, Singh Gill K, Aggarwal P, Singh Rawat R, Sunil G.
Advancing speech disorder diagnostics: a comprehensive
study on dysarthria classification with CNN. In: 2024 Asia
Pacific Conference on Innovation in Technology (APCIT),
MYSORE, India; 2024. p. 1e5. https://doi.org/10.1109/
APCIT62007.2024.10673651.

[22] Singla M, Gill KS, Upadhyay D, Devliyal S. Progressing
speech disorder identification: a thorough investigation into
dysarthria categorization utilizing ResNet 50 CNN. In: 2024
International Conference on Intelligent Systems for Cyber-
security (ISCS), Gurugram, India; 2024. p. 1e5. https://doi.
org/10.1109/ISCS61804.2024.10581063.

[23] Accardo J, Kammann H, Hoon Jr AH. Neuroimaging in ce-
rebral palsy. J Pediatr 2004;145(2):S19e27. https://doi.org/10.
1016/j.jpeds.2004.05.018.

[24] Gowda VK. Recent advances in cerebral palsy. Karnataka
Pediatr J 2020;35(1):4e18. https://doi.org/10.25259/KPJ_1_2020.

[25] Verma G, Gill KS, Kumar M, Rawat R. Next-gen speech
disorder diagnostics: CNN methods for dysarthria classifi-
cation. In: 2024 first International Conference on Pioneering
Developments in Computer Science & Digital Technologies
(IC2SDT), Delhi, India; 2024. p. 365e9. https://doi.org/10.
1109/IC2SDT62152.2024.10696797.

[26] Wang C. An interpretable and accurate deep-learning
diagnosis framework modeled with fully and semi-super-
vised reciprocal learning. In: IEEE transactions on medical
imaging. 43; 2024. p. 392e404. https://doi.org/10.1109/TMI.
2023.3306781.

[27] Degadwala S, Krishnamurthy D, Vyas D. DeepSpine: multi-
class spine X-ray conditions classification using deep learning.
In: 2024 3rd International Conference on Sentiment Analysis
and Deep Learning (ICSADL), Bhimdatta, Nepal; 2024. p.
8e13. https://doi.org/10.1109/ICSADL61749.2024.00008.

[28] Hasan Dathar Abas, Jader Umed Hayder. Semantic lung
segmentation from chest X-ray images using seg-net deep
CNN model. Polytech J 2023;13(2):1. https://doi.org/10.59341/
2707-7799.1712.

M.A. Ahsan et al. / Polytechnic Journal 15 (2025) 102e111 111

https://doi.org/10.1109/ECEI60433.2024.10510804
https://doi.org/10.1109/ECEI60433.2024.10510804
https://doi.org/10.1109/TMRB.2023.3328649
https://doi.org/10.1109/TMRB.2023.3328649
https://doi.org/10.1109/AMATHE61652.2024.10582228
https://doi.org/10.1109/AMATHE61652.2024.10582228
https://doi.org/10.1109/TNSRE.2024.3416159
https://doi.org/10.1109/TNSRE.2024.3416159
https://doi.org/10.1109/WRRC62201.2024.10696836
https://doi.org/10.1109/WRRC62201.2024.10696836
https://doi.org/10.1109/TNSRE.2024.3381739
https://doi.org/10.1109/TNSRE.2024.3381739
https://doi.org/10.1109/IE61493.2024.10599914
https://doi.org/10.1109/APCIT62007.2024.10673651
https://doi.org/10.1109/APCIT62007.2024.10673651
https://doi.org/10.1109/ISCS61804.2024.10581063
https://doi.org/10.1109/ISCS61804.2024.10581063
https://doi.org/10.1016/j.jpeds.2004.05.018
https://doi.org/10.1016/j.jpeds.2004.05.018
https://doi.org/10.25259/KPJ_1_2020
https://doi.org/10.1109/IC2SDT62152.2024.10696797
https://doi.org/10.1109/IC2SDT62152.2024.10696797
https://doi.org/10.1109/TMI.2023.3306781
https://doi.org/10.1109/TMI.2023.3306781
https://doi.org/10.1109/ICSADL61749.2024.00008
https://doi.org/10.59341/2707-7799.1712
https://doi.org/10.59341/2707-7799.1712

	An Optimized Model for Identification of Cerebral Palsy Using Deep Learning
	How to Cite This Article

	An Optimized Model for Identification of Cerebral Palsy Using Deep Learning
	Authors
	Data Availability Statement

	An Optimized Model for Identification of Cerebral Palsy Using Deep Learning
	1. Introduction
	2. Related works
	2.1. Overview of fMRI
	2.2. Fuzzy adaptive filtering
	2.3. Deep learning and CNN
	2.4. Key layers in CNNs

	3. Methodology
	4. Results
	4.1. Testing and training
	4.2. Pre-training
	4.3. Comparative result analysis
	4.3.1. Understanding key metrics
	4.3.2. Experimental Results


	5. Conclusion and Future Scope
	Ethics information
	Authors’ contributions
	AI usage declaration
	Funding
	Conflict of interest
	Acknowledgment
	References


